skip to main content


Search for: All records

Creators/Authors contains: "Chen, Haoran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A two-mode squeezed microresonator-based frequency comb is demonstrated with CMOS-compatible silicon nitride integrated photonic circuits. Seventy quantum modes, in a span of 1.3 THz, are generated in an integrated Kerr microresonator at telecommunication wavelengths.

     
    more » « less
  2. null (Ed.)
  3. ABSTRACT

    Predicting protein conformational changes from unbound structures or even homology models to bound structures remains a critical challenge for protein docking. Here we present a study directly addressing the challenge by reducing the dimensionality and narrowing the range of the corresponding conformational space. The study builds on cNMA—our new framework of partner‐ and contact‐specific normal mode analysis that exploits encounter complexes and considers both intrinsic and induced flexibility. First, we established over a CAPRI (Critical Assessment of PRedicted Interactions) target set that the direction of conformational changes from unbound structures and homology models can be reproduced to a great extent by a small set of cNMA modes. In particular, homology‐to‐bound interface root‐mean‐square deviation (iRMSD) can be reduced by 40% on average with the slowest 30 modes. Second, we developed novel and interpretable features from cNMA and used various machine learning approaches to predict the extent of conformational changes. The models learned from a set of unbound‐to‐bound conformational changes could predict the actual extent of iRMSD with errors around 0.6 Å for unbound proteins in a held‐out benchmark subset, around 0.8 Å for unbound proteins in the CAPRI set, and around 1 Å even for homology models in the CAPRI set. Our results shed new insights into origins of conformational differences between homology models and bound structures and provide new support for the low‐dimensionality of conformational adjustment during protein associations. The results also provide new tools for ensemble generation and conformational sampling in unbound and homology docking. Proteins 2017; 85:544–556. © 2016 Wiley Periodicals, Inc.

     
    more » « less